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Abstract

Background: The explosively radiating evolution of cichlid fishes of Lake Malawi has yielded an amazing number of
haplochromine species estimated as many as 500 to 800 with a surprising degree of diversity not only in color and stripe
pattern but also in the shape of jaw and body among them. As these morphological diversities have been a central subject
of adaptive speciation and taxonomic classification, such high diversity could serve as a foundation for automation of
species identification of cichlids.

Methodology/Principal Finding: Here we demonstrate a method for automatic classification of the Lake Malawi cichlids
based on computer vision and geometric morphometrics. For this end we developed a pipeline that integrates multiple
image processing tools to automatically extract informative features of color and stripe patterns from a large set of
photographic images of wild cichlids. The extracted information was evaluated by statistical classifiers Support Vector
Machine and Random Forests. Both classifiers performed better when body shape information was added to the feature of
color and stripe. Besides the coloration and stripe pattern, body shape variables boosted the accuracy of classification by
about 10%. The programs were able to classify 594 live cichlid individuals belonging to 12 different classes (species and
sexes) with an average accuracy of 78%, contrasting to a mere 42% success rate by human eyes. The variables that
contributed most to the accuracy were body height and the hue of the most frequent color.

Conclusions: Computer vision showed a notable performance in extracting information from the color and stripe patterns
of Lake Malawi cichlids although the information was not enough for errorless species identification. Our results indicate
that there appears an unavoidable difficulty in automatic species identification of cichlid fishes, which may arise from short
divergence times and gene flow between closely related species.
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Introduction

The African great lakes, including lakes Malawi, Tanganyika

and Victoria, are grand reservoirs of species of fishes in the family

Cichlidae. Within these lakes evolution has formed roughly 1450

to 1750 different cichlid species by rapid speciation [1]. Thus,

these species flocks comprise a central subject of research in the

field of evolution [2–4]. In Lake Malawi, numerous haplochro-

mine cichlid species between 500 to 800 have been formed

through adaptive radiation within the past million years from a

few common ancestors from neighboring rivers with subsequent

genomic contributions from river cichlids that currently survives

outside the Lake Malawi catchment; these species have adapted to

various habitats and diets with high diversity in morphology and

coloration [5–8].

Coloration is the most salient variable character among

congeneric Lake Malawi cichlid species and thus it has attracted

many researchers’ interests particularly in its role for sexual

selection and thus for speciation [9–15]. Males and females are

often strikingly sexually dichromatic; adult males generally exhibit

bright and diverse colors, but females tend to have dull color. In

addition to color information, the stripe patterns of cichlids, which

involve various shapes and combinations of melanic bars, spots,

bonds and divisions of different colors, constitute another layer of

the phenotypic space of cichlids on which natural and sexual

selection has probably been acting.

Our current approach to the examination of color components

drew from two previous studies that directly examined the color

features of cichlids [16,17]. Both of these previous studies

manually dealt with photographs for the extraction of color

information without automation across photographs. The two

studies provided no information about the variation within species,

because comparisons between specimens were done at the species-

level. [6]. Therefore it could be said that such diverse coloration

has not yet been tested enough for its relation to taxonomical

identities. The space of color variation at both intra- and
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inter-specific levels requires processing a large number of

photographic images.

The principle and concept of such an high throughput image

processing for the recognition of certain biological entities, which

is described as a sort of ‘automated taxonomic or species

identification’, was previously well established and practically led

to the development of a series of systems for some taxonomic

groups: insects, plants, spiders, planktons and so on (see [18] for a

review). The ‘automated species identification’ has a primary

motivation of reducing the burden of routine identification of vast

numbers of specimens. This approach even further extended to

the application to real organisms in the field, such as zooplankton

[19]. Previous studies were mostly based on features associated

with externally recognizable patterns of body and/or cell shape,

such as wing, genitalia, cell and pollen, with limited cases where

color was targeted by feature extraction [20–22]. Thus, we

adopted the basic idea and work flow of the ‘automated species

identification’ with appropriate adjustments toward our target

objects, the colorfully diverse rock-dwelling cichlid fishes.

Other works such as [23–26] and [27] put emphasis on

classifying fish species by computer aided discrimination. In [24],

extracted features from speckle patterns were used to classify three

species at fish markets. Similarly, Rova et al. [25] used stripe

pattern to discriminate striped trumpeter and western butterfish in

open waters through underwater video. Both shape and texture

features were used in [26] to classify cod, whiting and haddock.

However, the previous works have applied computer vision (CV)

techniques on species that look very different and is not applicable

in close species discrimination which look very similar even to

naked human eye.

To tackle the problem of classifying closely related species with

the aid of computer discrimination, we developed an automatic

classification method incorporating CV for the analyses of multiple

features of coloration and stripe patterns of cichlid fishes of Lake

Malawi in combination with geometric morphometric (GM) body

shape information, expecting that this combination would

maximize the resolving power of automatic classification. We

assessed the performance of various options and parameter sets at

each step of the image processing pipeline to determine the best

conditions for the analysis of photographic data of cichlids.

Subsequently, multiple features of coloration (n=42) and stripe

(n=6) patterns of cichlid digital images and geometric landmarks

(n=17) of fish body shape were chosen for their appropriateness

for the current purpose and evaluated their contribution to the

accuracy of species and sex identification. Finally, we discuss how

we can extend the usage of the current automated feature

extractor and species identification for future study of evolution

and speciation of cichlids, which will have implications for other

animal studies.

Materials and Methods

Ethics Statement
The Institutional Animal Care and Use Committee, which

oversees animal experimentation at Ewha University, was not

established when this study was conducted. However, we treated

our study subject, haplochromine cichlids, in strict accordance

with the recommendations of the Animal Behaviour Society [28].

All the haplochromine cichlids examined in this study are not

listed as endangered species and, in fact, are some of the most

abundant shallow water fishes in Lake Malawi, Africa. All the fish

examined were returned to the lake alive.

Our field sampling of cichlid fishes in the Lake Malawi was

properly permitted by the Malawi Government. For this evidence

we provide a copy of special licence granted to us by the Senior

Parks and Wildlife Officer of Lake Malawi National Park on May

30, 2008. According to this, we were allowed to collect

approximately 1500 individual fishes of rock-dwelling cichlids

locally called as Mbuna and to take fin clips from them for genetics

work later in laboratory. The Mbuna cichlids are not endangered

so there are no national (in Malawi) or international (in Korea or

Portugal) prohibitions to sample them for scientific research.

At the field, we took care to anesthetize the fish before clipping

fins for genetic study in the future. Our experimental protocol at

the field was as follows; prior to photographing, the fishes were

anaesthetized in a basin with natural clove oil. Besides facilitating

the handling of the fish, this step ensured that, upon relaxation of

the animal, colors were fully expressed, thereby reducing the noise

in color pattern variation associated to different emotional states.

Small portions of the dorsal and caudal fins were clipped for

genetic analysis in the laboratory later. Finally, the fishes were

transferred to a recovery basin protected from any perturbation

triggered by other wild animals and human activities, then safely

recovered there. All the fishes were recovered within less than 20

minutes in the recovery basin, and then freely swam away to the

lake.

Regarding the survey research with 10 volunteers, all non-

experts in taxonomy of cichlids, we carried out the survey at Ewha

Womans University in August and October, 2011, separately

twice with two groups, each 5 persons. The purpose of this survey

was to assess how accurately non-experts could identify 12 classes

of images of cichlid fishes compared to the computer vision

method that we developed for automated species identification.

Our manuscript was mainly allocated to the explanations about a

new method for species identification by computer aid. Therefore

we were interested in whether the performance of the new method

was acceptably high compared to the performance of non-experts

in taxonomy. We properly explained the purpose to the 10

participants before the experiment and obtained their verbal

consents for participating in our survey. Because the purpose of

this survey was to obtain rates of misclassification of color-printed

images from the ten volunteers and this whole process did not

involve any violation of human rights and privacy, we did not

obtained an official approval from the Institutional Review Board

(IRB) at Ewha. Although the student volunteers spent approxi-

mately 90 minutes classifying cichlids, they did not suffer any

physical or emotional pain. In addition, any private information

from them was not obtained for any purpose of analysis and for

publication after the survey. Additionally when we performed this

survey in 2011, taking a review process of such survey that did not

involve biomaterials from humans was not obligated in both Ewha

and Korea.

The act on bioethics and safety has been revised on February 2,

2013 in Korea. Since that time, the legal enforcement of the

bioethics and safety act began to operate in every institution

through the organization of IRB. The IRB at Ewha Womans

University was established on March 19, 2007, with enactment of

12 provisions of regulations on biomedical research activity

involving humans. The regulations have been imposed to research

activities involving invasive effects on humans. The 6th provision

of the regulation describes seven different committees reviewing

the following experiments that are relevant to the safety of human

and ethics: generation of human embryos, research of human

embryos, somatic human embryonic cloning, genetic testing of

human, genetic research with biological materials originated from

human, DNA bank of human genetic resources, and gene therapy

of human disease. Although our study includes human survey on

ten volunteers’ capability in sorting printed images of wild cichlid
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fishes, it did not involve any concern that the seven committees

routinely review.

Study Species
We photographed live rock-dwelling cichlid fish in Lake Malawi

from May 25 to June 20, 2008. Photographs and other ecological

information were collected for every fish sampled. Fish were

collected in two 5 m wide transects on the western shore of

Domwe Island in southern Lake Malawi. Each transect extended

from the shoreline to the bottom at approximately 20 meters of

depth. Fish swimming within transects were caught by sweep

netting in rough proportion to their actual occurrence and without

regard to sex, species or feeding and territorial behaviors. We used

monofilament nets about 3 by 3 m in size and SCUBA diving. We

chose some species for further analyses based on their abundance

and easiness to sample. In order to take photographs underwater

controlling unwanted noise in pose and illumination, we developed

a specialized camera platform that was intended to provide the

same fixed distance from the camera lens to fish, uniform exposure

and the same exact background (Fig. 1A & B). A large underwater

strobe flash with the exposure controlled by the camera was used

to ensure common and uniform light intensity regardless of cloud

cover and water depth. To ensure accurate record keeping, we had

serial numbers printed in waterproof ink separately and used them

as identification numbers for each fish by attaching them to the

upper part of the transparent sample box where fishes were gently

held against polycarbonate by flexible gray mesh (Fig. 1C). The

camera was a five-megapixel Olympus model in an underwater

case. Prior to photographing, the fishes were anaesthetized in a

basin with clove oil. Besides facilitating the handling of the fish,

this step ensured that, upon relaxation of the animal, colors were

fully expressed, thereby reducing the noise in color pattern

variation associated to different emotional states. Finally, the fishes

were transferred to a recovery basin and then returned to the site

where they were collected. The identification of species and sexes

were performed with the aid of photographs [6] and the help of

two highly experienced local divers, Richard Zatha and James

Maluza.

Approach of Computer Vision to Cichlid Images
We designed a pipeline of the present study as shown in Figure 2

and assessed each step of it in relation to optimal conditions for its

final performance in classification of photographic images of

cichlids into their ascertained species and sex identity. The feature

of coloration of fish images was captured by Red-Green-Blue

(RGB) and Hue-Saturation-Value (HSV) color models and that of

stripe patterns was captured by some proxies for the complexity of

images.

In computer vision (CV) methods, a ‘‘feature’’ is a value or

values extracted from a digital image to provide a summary in

numerical form. For example, an average RGB value of the image,

image dimension (width and height) and dimension ratio (width/

height) could be used to summarize an image. The advantage of

this approach lies in its simplicity and speed [29]. A feature

extractor was programmed in Python programming language.

The OpenCV library (http://opencv.willowgarage.com/wiki/

CiteOpenCV) was employed to deal with image processing; this

library can be thought as a programmable version of Photoshop.

Some of the basic capabilities of OpenCV include counting colors,

finding edges, converting color images to grayscale images and

detecting straight lines.

A statistical classifier examines and maps sets of the features

extracted and numerically summarized by CV to classes. For

classifiers, artificial neural networks (ANNs) have been widely

Figure 1. Apparatus for photographing anaesthetized fish
underwater in repeatable circumstances and a raw image of
photograph. (A) A schematic diagram and (B) a photograph of the
camera apparatus. (C) This is an example of photograph taken from
Labeotropheus fuelleborni (male). The number 08–1129 shown at the
top of the photo is the identification number of this sample, and along
with this label, useful information such as its species identification and
the place where it was sampled has been recorded in spreadsheets. The
30% gray tape is shown at the bottom. The tape may be used as a
reference in color correction, but it was not exploited in this study. Note
that tissue samples (the upper portion of the caudal fin and the
posterior portion of the dorsal) were removed before the photograph
was taken.
doi:10.1371/journal.pone.0077686.g001

Figure 2. Overall flow of the pipeline. Cichlid images are fed into
the feature extractor to be converted into vectors and are also
subjected to the analysis of landmark-based geometric morphobetrics.
Each vector is a numerical ‘‘summary’’ of each respective image and
each Procrustes coordinates are numerical shape variables obtained
from the landmarks of each image. With the summary and Procrustes
coordinates, the classifiers, the Support Vector Machine (SVM) and
Random Forests (RF) in this study, try to determine to which class the
input vector belongs.
doi:10.1371/journal.pone.0077686.g002
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employed [30]. By mapping outputs to classes, the ANN can

perform classification. Support vector machines (SVMs) [31] are

close relatives of ANNs in terms of input and output behavior.

They take many inputs and perform classifications. SVM tries to

find the decision boundary that has the maximal margin. A

margin is the distance between the decision boundary and the

closest observation. In fact, some configurations of SVMs are

mathematically equivalent to some configurations of neural

networks. Specifically, Collobert et al. [32] showed that Percep-

trons (two-layer neural networks) are equivalent to linear SVMs.

However, SVMs and ANNs have different learning methods, and

SVMs have a sounder mathematical base. ANNs adjust the

weights of each neuron, while SVMs find hyperplanes to learn. In

this study we chose and compared two different classification

methods, support vector machines (SVM) and random forests

(RF), because they have performed well in many applications. The

high usability and flexibility of SVM has resulted in a list of

growing number of successful applications for various tasks of

prediction and classification of biological units: DNA barcodes

[33], microRNAs [34], fluorescent microscopic images [35] and

even the classification of remote-sensing images [36]. Random

forests (RF) is a bagging tree method that uses many bootstrap

samples and trees [37]. It uses random sample of variables instead

of all variables for each tree to reduce the correlation among the

trees. Recently RF is widely used for image classification [38],

ecology [39], and medical genetics [40,41]. Unlike SVMs, RF can

identify important variables for classification. This information can

be used for further study.

For the SVM classifier we used LIBSVM [42], which is widely

used and has many scripts for automating common tasks, such as

selecting a training set (see following section). The number next to

the feature vector in Figure 2 is a one-dimensional list of numbers

obtained by the feature extractor as a numerical summary of the

source image.

Preparation of the SVM and RF involves a training phase,

during which the classifiers are changed as a function of the

learning material. To optimize the process and adjust the

parameters, several questions must be answered: Which features

should be extracted? Which features provide more information for

the classifiers? Is any image of a cichlid acceptable? These

questions are addressed in the following sections. The programs

and script used in this study are available for download from

http://code.google.com/p/ghoti/ or by contacting Joo (djin.joo@

gmail.com).

Image Preprocessing
Before using the feature extractor, input images were prepro-

cessed to improve the quality of extracted features.

Image selection. To check for errors in the initial identifi-

cation of species and sex at the field, the photographic images were

grouped and separated by their classes for manual examination.

Due to the practical nature of the sample collection and

photographing live fishes, photographic images that were deemed

likely to be misidentified were excluded from the study rather than

reclassified. Juvenile samples were removed because they did not

exhibit the traits of fully mature cichlids. Apart from these factors,

blurred images had to be excluded because they were not suitable

for extracting features that require sharp color transitions, such as

edge detection and line detection. In this study we examined 594

individual fishes belonging to 9 species of 12 classes that had

‘‘enough’’ samples, that is, no less than 10 samples per class

(Table 1 and Fig. 3). As mentioned above, we treated male and

female individuals as different classes due to their sexual

dimorphism for coloration [6], although taxonomically they

belong to the same species. Hereafter all the names of the classes

were abbreviated and followed by identify of sex for brevity;

Tropheops sp. ‘‘orange chest’’ female and male were represented as

toc_f and toc_m, respectively. The ‘‘_f’’ and ‘‘_m’’ stands for

female and male, respectively.

Color balancing/enhancing. The photographs were taken

with 30% neutral gray as the reference color, as shown in

Figure 1C, enabling the use of a color balancing technique.

However, this processing requires a great deal of human effort and

introduces another human uncertainty into the process; depending

on the selection of the pixel, the image is altered considerably. To

examine the effect of automatic color correction images were

processed using ImageMagick’s [43] normalize command: ‘‘con-

vert -normalize input.jpg output.jpg’’. However, this treatment

had a negative effect on the final performance of the SVM

classifier, degrading accuracy by about 10% due to image-wise

application of color correction, resulting in inconsistency through

images. In the final study no color correction was applied.

Removing background from images. To isolate the pixels

of a sample from the surrounding image the Grabcut [44]

algorithm was used and the implementation can be found at [45].

The Grabcut algorithm works by considering both brightness

changes and color similarity, lending better results than many

other classic background removal tools. Figure 4 shows examples

of results of background removal. Bright-colored cichlids which

can be easily distinguished from the background, yield good results

while dark-colored cichlids are prone to yield poor results, like the

example shown in Figure 4D. However, even if the image of the

fish was imperfectly isolated from the background, we still used the

image because the majority of the cichlid’s body was preserved,

and the features to be extracted were chosen to be less sensitive to

the geometric details.

Feature Extractor
The feature extractor was programmed in Python programming

language using the OpenCV library. The feature extractor takes in

images and extracts a numerical summary of each image in vector

form (Fig. 2). The extracted features were largely inspired by

Rowley et al.’s [29] work. Up to 48 features were extracted by the

extractor.

Color information. The digital image is first quantized (i.e.

similar to the posterize or optimum palette generation commands in

Table 1. Summary of species name abbreviations and
number of samples examined by the SVM and RF classifiers.

Abbrev. Name #Female #Male

gm Genyochromis mento 11 -

lf Labeotropheus fuelleborni - 12

mv Melanochromis vermivorus 11 -

pe Pseudotropheus elongatus - 30

pf Protomelas fenestratus 11 -

pg Petrotilapia genalutea 26 -

tg Tropheops gracilior 188 90

tm Tropheops microstoma 20 14

toc Tropheops ‘‘orange chest’’ 113 68

#Female and #Male columns show the composition of the species in the
vector pool. The species and sexes are arranged in alphabetical order.
doi:10.1371/journal.pone.0077686.t001
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image editors) into 7 colors, which can best represent the real

colored image, excluding the background color, magenta. Each

color is represented in RGB and HSV, yielding 76(3+3) = 42

features.

Color ratio. Another color related feature is the ratio of the

number of pixels which are in the most frequent color and the

second most frequent color. For example, if 600 pixels are brown

and 500 pixels are blue, and no other colors have more than 500

pixels, then the extracted feature is 1.2 ( = 600/500). This ratio is

extracted in the hope that it would provide information about the

cichlid’s stripe pattern.

Entropy. Entropy can be roughly explained as the complexity

of an image. The higher the entropy, the more complex is the

image. The entropy is extracted in the hope that it would provide

information about the complexity of the cichlid’s stripe pattern.

The input image is first converted to an 8-bit grayscale version,

and the entropy value is calculated by equation 1:

Figure 4. Grabcut results. Images in the left column are the inputs to
the Grabcut algorithm, and the images on the right column are their
results. The detected background was removed and replaced with
magenta, which was ignored by the feature extractor. The Grabcut
algorithm works more effectively than the conventional magnetic lasso
or magic wand tool. However, no algorithms are perfect, and they may
yield poor results, similar to (D).
doi:10.1371/journal.pone.0077686.g004

Figure 3. Representatives of each of 12 different classes of cichlids. These rock-dwelling cichlid species had relatively more photo samples
per group (.10) and were chosen for the analyses of feature extraction and classification as illustrated in Figure 4. The name tags in the lower right
portion of each photograph are combinations of the abbreviation of species names (Table 1), followed by ‘‘m’’ for male and ‘‘f’’ for female.
doi:10.1371/journal.pone.0077686.g003
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Entropy~{
X255
i~0

P(i): log2 (P(i))½ �, ð1Þ

where P(i) is the fraction of pixels with intensity i.

Edge pixel count. In image processing, pixels where the

brightness is radically different from those of nearby pixels may be

detected and called edges. Figure 5 shows an instance of edge

detection run on a cichlid image. Edge detection is employed as

another method of describing the complexity of the stripe pattern;

the number of edge pixels is recorded. In this implementation of

the extractor, a canny edge filter is used. However, larger species

tend to have longer regions of edges. To compensate for this, the

value defined by equation 2 is used instead:

Edge Ratio : ~
No:of edge pixelsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

No:of non{background pixels
p ð2Þ

Line features. As a more direct method of detecting the

stripe pattern, we detect straight lines from the edge detected

image, using the OpenCV implementation of the probabilistic

Hough transform, with an angular granularity of 45 degrees [46].

Hence, three features are extracted: the number of horizontal

lines, vertical lines and diagonal lines. The Hough transform

extracts straight lines from man-made objects quite well, while it

has poor performance on natural objects. Cichlids are no

exception, and the detection result is very poor. Nonetheless, line

features do contribute about 1 to 2% accuracy to the classification

result.

Feature extractor parameters. The feature extractor has

many internal parameters for each feature. It would be

unnecessarily verbose to describe here; thus, we have provided

the extractor available for download at http://code.google.com/

p/ghoti/.

Landmark-based Geometric Morphometrics (GM)
Seventeen landmarks outlining body shape and position of fins

and organs were designed as similar as previous studies with

cichlid fishes (Fig. S1). The x, y coordinates (n=34) of 17

landmarks were digitized from the photo of each individual using

TPSDIG32 (ver 2.12) [47]. Generalized Procrustes analysis [48]

which removes non-shape variations by rescaling each fish to unit

size and rotating images so that each corresponding landmarked

positions are aligned as closely as possible was applied to the

coordinate data to extract shape variation using MorphoJ (ver

1.03a) [49]. For SVM and RF classification, the resultant x, y

Procrustes coordinates were appended to the numerical matrix of

48 features extracted as above by the feature extractor.

Classifiers
Vector pool generation for SVM. A preprocessor was

programmed to enable vector selection and feature selection.

For example, one might want to remove all females and use only

males because males seem to have more distinct features from

species to species. Also, in some experiments it may be desirable to

disable the use of color features to examine the usefulness of non-

color features. Another important preprocessor is the LIBSVM

tool svm-scale which examines the vectors and scales all the

attributes to intervals [0,1] or [21,1]. Without this scaling, some

large valued attributes may dominate over small valued attributes,

rendering them insignificant. The raw vector from the extractor is

processed by the custom preprocessor, and it is then scaled by svm-

scale.

Training and classification parameters of SVM. Like the

feature extractor, LIBSVM requires many parameters. For actual

parameters used in the experiments, refer to the scripts at http://

code.google.com/p/ghoti/.

Cross-validation of SVM. We partitioned the 594 vectors

(number of specimens, Table 1) randomly with 80% training set

and 20% test set and fit models in a training set and computed the

misclassification rates in a test set. Because the two sets are

disjointed, the test set can act as a new ‘‘unknown’’ vector for the

SVM to predict. We repeated this procedure 100 times, leading to

11,800 predictions in total. For automated iteration of training and

classifications, we made scripts that executed programs in the

LIBSVM tool set. The results of the classification can later be

examined to construct a confusion matrix. Confusion matrices will be

discussed in the Results section.

Random Forests (RF)
The dataset had 594 observations and 82 variables of which 34

came out of x, y coordinates of 17 geometric landmarks. The

response variable was the 12 different classes. We tried to find the

optimal models using 10 fold CV. We found that RF with the

number of randomly selected variables = 14 and the number of

trees = 500 gives the best result. We performed a cross-validation

of RF in the same way described above in SVM.

Survey Research
As an alternative way to evaluate the performance of computer

vision in fish classification, we surveyed ten volunteering under-

graduate students about how accurately they could discriminate

the 12 different classes of cichlids using only the naked human eye.

They were separately consulted about species and sex identifica-

tion of the images. None of students had any formal training in fish

Figure 5. An example input image and its resulting edge
detection. (A) A photographic image before edge detection and (B)
after a canny edgy filtering. Places where brightness changes suddenly
are marked white.
doi:10.1371/journal.pone.0077686.g005
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classification before this survey. They were divided into two groups

and then tested with different type of image sets, respectively: the

original photo images with background (e.g. Fig. 4A & C) and the

background-subtracted ones (e.g. Fig. 4B & D). We printed in

color all the 594 cichlids with the image size being 12 by 8 cm size

and provided each participant with randomly selected but

presorted 12 classes of fish images of 421 individuals, about 70

percent of the 594 individuals, so that he/she had one hour of

learning time to sufficiently perceive and compare various features

of each fish groups by him- or herself. Then, the participant was

asked to classify the rest of the fish samples (173 individuals) for 40

minutes. The students were allowed to refer back to the 12

presorted classes continuously while trying to sort the images one-

by-one. We counted and summarized the number of accurate

classification and misclassification out of the 173 tests per person.

Results

Classification
Performance of the extractor. The extractor was run on

the 594 individual images of cichlids, each about 11006400 pixels,

on a computer with an Intel Core i5 CPU running at 2.40 GHz

and 2 GB RAM. The task took 13 minutes, 15 seconds; thus, the

average time to process 1 image was about 1.2 seconds.

Feature selection. Figure 6 shows the SVM classifier

accuracy vs. the number of colors used for training. No other

features besides the colors were used to obtain this plot. The x-axis

indicates the number of colors used for training the classifier.

When the number of colors is 1, only the most frequent color is

used, and when it is 2, the first and the second most frequent colors

are used, etc. As seen in the figure, colors alone are a useful set of

features, contributing more than 50% of the accuracy of the

classification, even if only the most frequent color is used. Using

more color does not necessarily lead to better classification. In

addition, rather than RGB or HSV alone, using RGB and HSV

values simultaneously can improve the overall performance of the

classifier. It seems to be due to the fact that while HSV values can

be calculated from RGB values, their relation is non-linear; hence,

providing both RGB and HSV values delivers extra information to

the classifier, which works linearly.

Similarly, providing more features does not necessarily improve

overall performance. Therefore, it is necessary to explore the

feature combinations and identify features that confuse the

classifier and discard them. However, it is infeasible to try every

combination of features because we have 248 possible combina-

tions. To accommodate this problem, a simple heuristic method

suggested by Chen and Lin [50] was used. An F-score was

calculated for each feature, and only the features with F-scores

greater than or equal to some user determined threshold value

were selected, where the F-score of feature i is defined by equation

3:
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where C is the set of the classes, �xxi is the average of the feature i in
all classes, �xxci is the average of the feature i within a class C, nc is the

number of vectors that belong to class C and xck,i is the value of

feature i in vector number k of class C. Simply put, the

denominator is the sum of the variance of each class. All features

from the 3 most frequent colors had F-scores greater than 1, while

most of the least frequent 3 colors had F-scores less than 0.5; most

of the scores were about 0.1. Generally, features with higher F-

scores are more likely to be more discriminative.

Table 2 presents F-scores of non-color features. We used

features with F-scores greater than 0.7; hence, the color ratio and

diagonal line features were excluded. Classification with feature

selection yielded an accuracy of 68 to 69% by the SVM

classification, while without selection, it yielded an accuracy of

67%. It is worth noting that without any color features, these

features can achieve an accuracy of 48%, and the accuracy with

only color features is 66%. Note that these accuracy ratings

represent average accuracies acquired from 100 repetitions of

randomized tests, and they suffer from Monte Carlo variation.

Color information. It is worth noting that the previous study

of cichlids [17] focused on single average color of limited areas of

body. However, in this study, rather than simple averaging, a color

quantization method has been used to cluster colors in groups.

Figure 6 suggests that groups of color can deliver better

performance than one average color. This suggests that multivar-

iate analysis should make use of more information than was used

in previous works.

To visualize the high efficiency of using some proportionally

frequent color components, we averaged the three most frequent

colors and condensed them into a palette (Fig. 7). When only one

color is given, all colors appear brown tints that are quite similar

(results not shown). However, given the three most frequent colors,

we get the impression that we can distinguish the cichlids fairly

well. All significant variation in male cichlid color occurs within

species, rather than between the species (Fig. 8).

The confusion matrix. One hundred results of randomized

repetitions of SVM and RF classification on different types of data

(colors, stripe and GM) provided summary statistics of both mean

and standard deviation (s.d.) of the accuracy (Table 3). The most

accurate classification was obtained by SVM classification

(average = 77.6%; s.d. = 3.4%) when the body shape information

based on landmark-based GM was combined to the vectors of 48

different features of colors and stripe patterns. Random forests

(RF) also yielded a very similar result with the same data (Table 3).

SVM slightly gave better result than RF. When only one type of

data was used, the success rate ranged from 64% to 68% (Table 3).

SVM on color and stripe yielded an accuracy of 78.2% when only

female samples were used, and using only males yielded 77.5%

(data not shown). This means that separating the sexes yielded

more accuracy than using both by presumably lowering the total

number of classes, which had an accuracy of 68 to 69%.

Table 4 presents a confusion matrix acquired from the

repetition of the randomized subsampling cross-validation tests

(n=11,800). The table has been made by counting the predictions

by SVM classifier. For example, the number 137 at column tg_m

row toc_m represents that the classifier mistook tg_m for toc_m

137 times during 11,800 classifications. Note that these accuracy

ratings represent average accuracies acquired from 100 repetitions

of randomized tests, and they suffer from Monte Carlo variation.

Notably, tm_f showed the lowest accuracy and were instead

frequently classified as toc_m & _f. Figure 9 shows a sample image

of tm_f and toc_f. Because the species are very similar, the

extracted vectors are inseparable in the vector space. For such

case, the classifier places more weight on toc_m & _f because there

are more toc_ms & _fs than tm_fs. Among the frequently

misclassified classes, tm_f always recorded the first one and other

classes such as tm_m and toc_m followed it regardless of the data

types and the classification methods (Table 4, 5, and S1).

We found that a small number of variables are very important

to make an accurate RF classification. The accuracy and Gini

indices revealed that shape variables came out of y coordinate of
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three landmark positions, 5, 1 and 10 in order, were the three most

important variables (Fig. 10 and S1). The y coordinate represents a

vertical height of each landmark position. Therefore the y

coordinates of position 5 and 10 relate with the body height of

cichlids and that of position 1 does with the height of mouth tip.

Accordingly there were substantial differences of the distributions

for these variables, as we can see from the box plots of these

variables for each class (Fig. 11). The next top forth variable came

from a color component, hue of the most frequent color (Fig. 10).

Although the stripe pattern of cichlids did not make a meaningful

contribution to the classification, the number of horizontal lines

was a little bit more informative than the edge count and entropy

(Fig. 10).

To investigate related factors for the success of SVM

classification, we statistically examined the effect of sample size

on the two kinds of estimates shown in Table 4. As expected, there

was a highly significant correlation between the sample size of

cichlid individuals (Table 1) and ‘‘Sum’’ (Table 5) (Spearman’s

r=0.972, P,0.001). However, when we tested the correlation

between the sample size and ‘‘Accuracy’’ (Table 5), this correlation

was found to be insignificant (Spearman’s r=0.077, P=0.811).

Also, no correlation was found between ‘‘Sum’’ and ‘‘Accuracy’’

(Spearman’s r=20.035, P=0.914). The trend of these statistics

was repeated in the case of RF (data not shown). Therefore the

success of SVM and RF classification did not depend on the

sample sizes in this study.

Human Survey
Our survey showed that the average success rate of accurate

classification by naked human eye was 41.6%. The accuracy was

not different between the two groups of students: one group

Figure 6. Number of colors used for training vs. classifier accuracy. If the number of colors used is 4, this means only the 4 most frequent
colors from 7 extracted colors are used for training the classifier. No other features besides color were used to obtain this plot.
doi:10.1371/journal.pone.0077686.g006

Table 2. The F-scores of features.

Feature F-score

Color ratio 0.42

Entropy 0.98

Edge count 1.08

Horizontal line 0.93

Diagonal line 0.46

Vertical line 1.15

F-scores for non-color features. Features with higher F-scores are more likely to
provide useful information to the SVM classifier.
doi:10.1371/journal.pone.0077686.t002

Figure 7. Palettes of the three most frequent color components
among the vectors extracted by the feature extractor from the
12 different cichlid classes. Each class is labeled according to Table 1
and followed by a tag for male (_m) and female (_f), respectively.
doi:10.1371/journal.pone.0077686.g007
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questioned with original photographic images with background

(average = 41.27%; standard error = 2.18%) and the other group

questioned with grabcut images (average = 41.96%; standard

error = 3.57%) (Table S2, Fig. 4). Both of these statistics

consistently showed that untrained human ability to classify the

12 classes of cichlids was much lower than those of SVM and RF

based on computer vision regardless of whether or not GM

information was added. The confusion matrices of human survey

revealed frequently misclassified classes of cichlids (Table S3 and

S4). When both matrices were summed, the most inaccurate cases

were in order of toc_f (accuracy = 14.2%), tm_f (20.0%), toc_m

(29.5%) and tm_m (32.5%). This result was very similar to that of

computer vision except for the toc_f that had the most frequent

misclassification to tm_f in the human survey. Also tm_f was

frequently misclassified to toc_f & _m. Again it was notable that

even the computer vision also made a most frequent mistake with

tm_f, severely confusing it to toc_f (Table 5).

Discussion

As the general aim of ‘automated species identification’ has

been intended to reduce the burden of routine identification of

vast numbers of specimens [18], we constructed an automatic

pipeline that can be applied to a large set of photographic images

of cichlid fishes of Lake Malawi, Africa. Admittedly much is

needed to improve the degree and performance of automation. It

is also needless to say that the inevitable variation of pose,

illumination and ontogenic change of live fishes in wild habitats

must be accounted for a working ‘automated species identification’

in the future. In the present study we rather focused on the

feasibility of ‘automated species identification’ through the

examination of the amount of variation extracted from diverse

colors and stripes of rapidly evolving cichlids. For this purpose, we

had to explore the unknown space of the feature of color and stripe

to find exploitable sources of variation between both taxonomic

units and sexes. This task was implemented by designing the

pipeline in Figure 2 and subsequent investigations of the optimal

options and parameters for each step of it. The feasibility of this

pipeline was finally evaluated through its performance in species

and sex identification.

To the best of our knowledge, this is the first experiment of

computer vision for the analysis of coloration and stripe patterns of

cichlids. Although the SVM and RF statistical classifiers failed to

predict correct species in some cases (SVM: 32% when only color

and stripe information was extracted but 22% when body shape

information was added), the significant performance of the current

method highlights its usability particularly in the analysis of large

image data with a potential for flexible applications to different

animal studies. Other studies of machine learning targeting color

patterns of insects showed some varying proportion of misclassi-

fication [21,22], indicating that color and its patterns, in nature,

may be relatively elusive features for species identification,

Figure 8. Plot of the two most frequent colors among species. The plot conforms to Deutsch’s observation [26] which states that all
significant variation in male cichlid color occurs within species, rather than between species.
doi:10.1371/journal.pone.0077686.g008

Table 3. Accuracy of classification based on different
information and methods.

Color and stripe Body shape All combined

SVM 68.1 (3.6) 66.7 (3.7) 77.6 (3.4)

RF 64.8 (4.0) 64.1 (4.1) 74.5 (3.9)

Statistics in percentage (%) of mean and standard deviation of 100 results of
100 repetitions of randomized tests. The numbers in parenthesis are standard
deviation.
doi:10.1371/journal.pone.0077686.t003
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particularly in closely related species such as the current cichlid

fishes.

We think that the considerable misclassification rates in the

present study is primarily associated with biological characteristics

of cichlids that originally cause difficulties in species identifications,

rather than on the techniques employed here. For example, our

survey with ten volunteers showed 58.4% of fish classification done

by naked human eye was wrong. Simply this result indicates that

the identification of species and sex of closely related cichlids is

inherently very difficult to a non-expert mostly due to the

similarity between them. We discuss this point in the following

paragraphs.

From the results of SVM and RF classification (Table 3, 4, 5

and S1), and the lack of correlation between sample size and

accuracy, we note that the more important factor for the accuracy

of SVM classification is not the number of samples of the different

classes in the present study, but rather the fundamental

information residing in the original data. This implies that the

information residing in the digital images might not be enough for

computer vision to tease apart the difference between some

species. From a different angle we can view this problem as the

discrepancy between traits used in traditional taxonomy based on

morphological characters and those that the method of computer

vision extracts from photo images. The traditional classification of

cichlids often uses some traits that are very subtle; thus, it is

difficult for these features to be captured from photographs. For

example, a slight variation in head and jaw morphology has been

used to classify Tropheops [51]. The feature extractor for colors and

the complexity of stripes inevitably overlooks such traits, which

could lead to the considerable overlap of classes in the color space

as shown in Figure 8. To compensate this problem, we added body

shape information through GM from the same image set. Indeed

the additional shape information enhanced the average accuracy

in SVM and RF classifications by 9.5% from 68.1% to 77.6% and

by 9.7% from 64.8% to 74.5%, respectively (Table 3).

Therefore, the oversight of the subtle but possibly important

taxonomic key traits might contribute to some degree of

misclassification. Accordingly, we can conclude that the accuracy

of the statistical classifiers depends highly on the data set examined

and the classes involved, and thus an extent of similarity in color

and stripe patterns among classes. Although we cannot currently

account for all the other sources of misclassification that were

introduced by several steps of data transformation from the

preparation of images in the field to the final digital classification

of the feature vectors, we strongly consider two biological factors

related with the rapid speciation of Lake Malawi cichlids: short

divergence time and gene flow among species for the non-trivial

proportion of misclassification (the least 22% by SVM in Table 3)

unresolved to the last by the current methods. This reasoning calls

Table 4. Confusion matrix of SVM on coloration and stripe vectors without GM information.

Predicted Actual

gm_f lf_m mv_f pe_m pf_f pg_f tg_f tg_m tm_f tm_m toc_f toc_m

gm_f 128 0 0 32 0 0 0 46 0 0 0 0

lf_m 0 210 0 0 0 0 0 0 0 0 0 0

mv_f 0 0 154 0 0 0 0 0 0 0 0 0

pe_m 42 0 8 443 0 0 13 56 0 0 0 1

pf_f 0 0 13 0 205 1 0 0 17 0 0 12

pg_f 0 0 3 0 0 514 0 10 0 0 0 14

tg_f 0 0 7 86 0 0 3058 605 41 0 357 113

tg_m 21 0 18 47 0 6 444 860 30 0 97 161

tm_f 0 0 0 0 14 0 5 1 72 60 44 64

tm_m 0 0 0 0 1 0 0 0 43 72 8 47

toc_f 0 0 0 3 6 13 185 76 83 30 1535 317

toc_m 0 0 0 0 3 2 39 137 87 94 253 633

Sum 191 210 203 611 229 536 3744 1791 373 256 2294 1362

Accuracy(%) 67.02 100 75.86 72.5 89.52 95.9 81.68 48.02 19.3 28.13 66.91 46.48

By 100 repetitions of randomized experiments, 11,800 predictions were made. An average accuracy of the result is 66.49%. The species and sexes are arranged in
alphabetical order as in Table 1.
doi:10.1371/journal.pone.0077686.t004

Figure 9. An example of the most frequently confused images.
(A) A sample image of tm_f and (B) toc_f.
doi:10.1371/journal.pone.0077686.g009
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researchers’ attention to a need of study of genetic data

corresponding to the individuals examined by CV and GM.

Relevance to Genetics and Morphometrics
The CV and GM results directly raise a question. Do the

frequent misclassifications in some species indeed correlate to high

genetic similarities between them? To address this question we

examined the presence of correlation through Mantel test of two

pairwise matrices: the rate of misclassification of SVM (Table S5)

and genetic distances among mitochondrial NADH dehydroge-

nase subunit 2 (ND2) gene sequences obtained from GenBank

(mv_f: EF585270; pf_f: AF305301; toc: AF305301; pe: EF585272;

tm: EF585258; tg: EF585260; gm: GU946223; Petrotilapia nigra:

GQ422567; and lf: EF585259) (Table S6). It should be noted that

this Mantel test is very limited because the gene sequences were

not extracted from the specimens that we used in the present

study. The misclassification matrix of RF (Table S7) was also

examined for another Mantel test with the same genetic matrix.

Despite the insufficient resolution of the ND2 genetic distance, we

found a statistically significantly negative correlation between the

matrices (Mantel’s r=20.259, P=0.0067 for SVM) but only

marginal significance in RF (Mantel’s r=20.199, P=0.0850).

The significantly negative correlation in SVM was also reproduced

even when the GM information was not included (data not

shown).

As expected, this result implies that misclassifications of SVM

and RF are likely to occur between genetically close cichlid

species. For example, we had an average of 19.3% of success rate

in the case of tm_f, which was mainly misclassified as toc_m & _f

(Table 4). This problem also took place in the human survey

(Table S3 and S4). According to a previous phylogenetic study of

cichlids [52], mitochondrial ND2 sequences were found to be

identical among several different species of the genus Tropheops,

including T. microstoma (tm here), T. gracilior (tg here), T. ‘‘orange

chest’’ (toc here) and T. ‘‘broad mouth.’’ This result suggests a

great genetic and morphologic similarity among the Tropheops,

although similarity in this gene does not necessarily indicate

similarity for genes that contribute to taxonomic key characters. In

addition, interestingly from a taxonomic review of 13 species of the

genus Tropheops [53], we could find a hint as to why tm_f &_m

resulted in such a low accuracy in the SVM classification.

Goldstein [53] examined the morphological distinctions among

7 new species and 6 recognized species using Principal Component

Analysis (PCA) on 24 different morphometric measurements and

12 meristic counts. When the result of PCA was presented in a

polygon clustering diagram, T. microstoma (tm) always occurred

very close to the polygons of T. gracilior (tg), which represented

many individuals. Unfortunately, the analyses were based on only

one T. microstoma (tm) specimen. In fact, the singular specimen did

not fall into the PCA polygon clusters from other Tropheops, but it

was so close to T. gracilior (tg) that T. microstoma (tm) could be

possibly overlapped with T. gracilior (tg). The overlap of polygons

was observed among tm, tg and toc in our GM examination too

(data not shown).

The species rich haplochromine cichlids of Lake Malawi are

very similar genetically, and different species share large portions

of their genetic variation. This has been seen with allozymes [54–

56], mitochondrial DNA [57,58], microsatellite or short-tandem-

repeat (STR) loci [59], nuclear DNA sequences [60,61] and single

nucleotide polymorphisms (SNPs) [8]. The extensive sharing of

genetic variation among Malawi cichlids could be due to the

persistence of ancestral variation [57,58,61] and/or an ongoing

low level of gene flow [2]. Evidence of interspecies gene flow

comes from hybrids and hybrid populations [62–64] and the

phylogeny based on broad taxon sampling and usage of nuclear

and mitochondrial genes [7]. Even in locations where the local

population size may not be very large, microsatellite loci generally

revealed high heterozygosities, with large numbers of alleles over

broad size ranges [65–67].

On the other hand, parallel adaptation was also suggested for

the color motifs that re-occur within the same species and species

complexes at different locations around the lake, as well as in

multiple genera [68]. Our previous population genetic and

phylogenetic studies also indicated a signature of gene flow among

species [69,70]. If hybridization occurs at low levels, then this

could serve both as the source of genetic variation for color

Table 5. Confusion matrix of SVM on the combined vectors of coloration, stripe and GM information.

Predicted Actual

gm_f lf_m mv_f pe_m pf_f pg_f tg_f tg_m tm_f tm_m toc_f toc_m

gm_f 134 0 1 50 3 0 0 24 0 0 0 0

lf_m 0 211 0 0 0 0 0 0 0 19 0 0

mv_f 14 0 202 0 0 0 0 0 0 0 0 0

pe_m 42 0 0 387 0 0 0 61 0 0 0 11

pf_f 0 0 3 0 212 0 0 1 0 0 0 0

pg_f 0 0 0 0 0 480 0 0 0 0 0 20

tg_f 0 0 31 24 0 4 3455 232 19 0 215 17

tg_m 19 0 0 98 0 27 166 1193 1 11 120 85

tm_f 0 19 0 0 0 0 5 21 108 65 43 109

tm_m 0 0 0 0 0 0 0 0 30 155 1 3

toc_f 0 0 0 2 1 8 161 134 162 26 1654 349

toc_m 0 3 0 2 3 2 14 113 63 34 186 732

Sum 209 233 237 563 219 521 3801 1779 383 310 2219 1326

Accuracy(%) 64.11 90.56 85.23 68.74 96.8 92.13 90.9 67.06 28.2 50 74.54 55.2

By 100 repetitions of randomized experiments, 11,800 predictions were made. An average accuracy of the result is 75.62%.
doi:10.1371/journal.pone.0077686.t005
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patterns and as the source of shared color motifs. Newly

introduced color pattern alleles would typically be selected against

but might sometimes be favored depending on the cues preferred

by females [71]. Kocher and colleagues have argued in support of

the ‘‘divergence with gene flow’’ model of speciation [72,73] for

Malawi cichlids [2,63,74]. On the other hand selection for

character displacement among sympatric species could lead to

dissimilar yet closely related sympatic species and leave higher

levels of similarity between unrelated species that live in different

regions [68].

Genetic similarity is the basis of phenotypic similarity.

Therefore, the very limited morphological traits used for

taxonomic identification, such as a slight variation in head and

jaw shape that is actually used as an operational classification key

in the field would be difficult to be captured by the current image

processing method. One of the cases is, for example, the genus

Tropheops, which has an unique head profile and is readily

distinguished from other genera [51]. Because shape characters

among Tropheops species would not be easily discernable to human

eye, we expected that an additional explicit method such as

landmark-based GM techniques might enable us to gain a much

higher resolving power for solving the slight differences [62,63,75–

81]. This turned out to be the case in our experiment, although the

degree of increment was limited. Out of 12 classes, eight showed

increased accuracies in classification but four classes did very

slightly decrease (Table 4 and 5).

Nevertheless the presence of mixed genotypes among closely

related cichlid species and even across genera casts doubt on the

presence of clear-cut species and/or population boundaries in

morphological space. Thus, this problem might have naturally

contributed to the some failure of classification both in SVM and

RF. It should be noted that we overlooked the possibility of the

presence of hybrids in the field when classifying and labeling the

fish, and thus our species identification was dichotomous

regardless of their possible status as of hybrids and/or backcrosses

Figure 10. The important variables for random forests (RF). Two measures of accuracy and Gini index were plotted for each variable used for
classification with random forests in a rank order from top to bottom. Meaning of abbreviations of shape variables: ProcCoord_5y, Procrustes y
coordinate of landmark position 5; ProcCoord_2x, Procrustes x coordinate of landmark position 2; the number represents landmark position as
described in Figure S1. The other abbreviations of shape variables follow this regularity. Meaning of abbreviations of color variables: Color_0_h, hue
of the most frequent color in terms of pixel number in a given image of fish; hereafter the numbers (0, 1 and 2) between underscores represent the
three most frequent colors in decreasing order of proportion. The letters at the end of the abbreviation came from RGB and HSV color models: r, red;
g, green; b, blue; h, hue; s, saturation; v, value. The abbreviations of variables related with stripe pattern: X0_deg_lines, the number of straight
horizontal lines; X90_deg_lines, the number of straight vertical lines; X45_deg_lines, the number of straight diagonal lines.
doi:10.1371/journal.pone.0077686.g010
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to their parental species. Such dichotomous identifications might

possibly contribute to the failure of SVM and RF.

The portion of the discrepancy (22% in SVM and 25% in RF)

between our methods and traditional taxonomic classification

could be partially accounted for by mixed patterns of colors and

strips among species due to recent and prolonged introgression

among some species. In particular, the individuals that SVM most

frequently failed to correctly classify might be the fishes with

atypical coloration and faintly marked strips due to hybridization

or introgression of genes from different species. As a working

hypothesis, we can predict that the most frequently misclassified

fishes might have mixed or co-segregating genotypes between

species due to short divergence times and/or gene flow. The

prediction, therefore, warrants further study through population

genetics in parallel with the present CV and GM analyses.

In particular, it will be very interesting to compare vector data

from the feature extractor with corresponding population genetic

data to see if there is any correspondence between the two

independent matrices. Our current feature extractor can provide

us with the whole vector values in a text format file, so we will be

able to treat the data as independent multivariate data. As an easy

and quick way for checking the correspondence, we can design an

experiment that overlays the genetic data to that of the feature

vector, focusing on hybrid-like individuals screened by genetic

data such as multiple microsatellite loci or SNPs; particularly, we

will be able to assess if genetic intermediates (i.e., apparent F1 or

F2 hybrids) will be also intermediates by the phenotypes erected in

this study. A further promising point is that if there is

correspondence, we can scrutinize which columns in the vector

matrix (82 features) exhibit associations to any given genetic

marker. One big advance of this line of study will be that the

candidate traits exhibiting strong disjunctive patterns between

species or sexes may be the ones that show the most evidence of

character displacement and of being under divergent natural

selection, potentially by being involved in mate recognition

processes. Identifying such traits and quantifying them will be a

great help for us to understand diverging processes of Malawi

cichlids.

Finally, note that the vector columns do not necessarily

correspond to real seemingly discrete shape morphs (bars, spots,

bonds, and their colors) in the body of fish in a one-to-one manner;

particularly, the shape column based on entropy corresponds to a

composite character of the real characters, which is analogous to

the complexity of amorphous objects like clouds. Therefore,

refinements in targeting morphs might be an alternative compo-

nent to the current approach as applied for the recognition of wing

shape of butterfly [82].

Conclusion

The present study is a pilot investigation before the develop-

ment of full-fledged ‘automated species identification’ of cichlid

fishes; here, we focused on the characterization of the coloration

and stripe patterns of the species-rich rock-dwelling cichlids from

Lake Malawi in terms of what features and how much of them

could reliably deliver species specific information, a proxy of

evolution, because these external features have long been a subject

of sexual selection as a driving force of speciation. As expected our

result showed that there are indeed some features, frequent colors,

horizontal lines and edge counts, that deliver reliable information

on the species and sex identification of cichlids, with a considerable

limitation too. Given this limitation and that the traditional

taxonomy of cichlids and other animals is centered on morphol-

ogy, other phenotypic features such as body shape variables are

Figure 11. Distribution of three most important shape
variables in random forests (RF) across 12 classes of cichlids.
The labeling of 12 classes of cichlid fish follows the abbreviating
scheme listed in Table 1 and that of shape variables of A, B and C does
the previously explained one (Fig. 10).
doi:10.1371/journal.pone.0077686.g011
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warrantable for the improvement of automatic classification.

Evidently our result supports this notion by boosting the

performance of SVM and RF classifiers; the most contributing

shape variables were found to be those related to the height of

body and mouth tip.

Overall, the computer vision with or without body shape

information of cichlids outperformed the nonexperts’ ability to

discriminate different species and sexes. The average success rate

in the present study seems to be slightly lower than those of other

automated classification studies. The non-trivial discrepancy

(minimum 22%) between the present computer vision approach

and the practice of traditional taxonomy done by us in the Lake

Malawi could be explained by combinations of the following

reasons: (i) the presence of taxonomic key traits that are hard to

capture with the current photographic images taken from only

front side, (ii) the extremely close genetic distances between some

cichlid species due to short divergence times; and (iii) putatively a

considerable degree of gene flow between different species which,

in turn, might have caused a certain degree of mixed patterns of

color and stripe among species. If the latter reason is the case, it

will be difficult to achieve a perfectly operating automated species

identification system whatever currently and later available tools

and techniques are introduced. This notion has implications for

‘automated species identification’ in other closely related organ-

isms. However, the situation of short divergence times and gene

flow between cichlid species provides very valuable natural

mating experiments from which all the combined data of

computer vision, GM and population genetics could be extracted

and used to find genetic loci responsible for evolutionarily

important phenotypes of color, stripe and body shape of the

rapidly speciating species.

Supporting Information

Figure S1 Landmarks of geometric morphometric (GM)
analysis of cichlids. The numbering and dots represent 17

landmark positions for capturing body shape of cichlids.

(TIF)

Table S1 Confusion matrix of RF on coloration and
stripe vectors with GM information.
(DOCX)

Table S2 Summary of survey result.
(DOCX)

Table S3 Confusion matrix of human survey on the
images with background.
(DOCX)

Table S4 Confusion matrix of human survey on the
images without background by grabcut.
(DOCX)

Table S5 Matrix of pairwise misclassification rates of
SVM on the combined vectors of coloration, stripe and
GM information.
(DOCX)

Table S6 Pairwise genetic distances (K2P) of mitochon-
drial NADH dehydrogenase subunit 2 (ND2) gene
sequences.
(DOCX)

Table S7 Matrix of pairwise misclassification rates of
RF on the combined vectors of coloration, stripe and GM
information.
(DOCX)

Acknowledgments

The authors would like to thank James Maluza, Richard Zatha, and Stella

Capoccia for their help during the field trip to Lake Malawi in 2008. We

would also like to thank Jay Stauffer for providing additional confirmation

of some specimen’s species identification and an anonymous reviewer for

constructive suggestions.

Author Contributions

Conceived and designed the experiments: DJ CP JH YW. Performed the

experiments: DJ CP JH YW. Analyzed the data: DJ YK JS YW.

Contributed reagents/materials/analysis tools: DJ YK JS CP JH YW.

Wrote the paper: DJ YK JS CP JH YW.

References

1. Barlow GW (2000) The cichlid fishes. Cambridge, MA: Perseus Publishing.

335 p.

2. Danley PD, Kocher TD (2001) Speciation in rapidly diverging systems: lessons

from Lake Malawi. Mol Ecol 10: 1075–1086.

3. Kocher TD (2004) Adaptive evolution and explosive speciation: the cichlid fish

model. Nat Rev Genet 5: 288–296.

4. Kornfield I, Smith PF (2000) African cichlid fishes: model systems for

evolutionary biology. Ann Rev Ecol Syst 31: 163–196.

5. Delvaux D (1996) Age of Lake Malawi (Nyasa) and water level fluctuations.

Mus R Afr Centr Tervuren (Belg) Dept Geol Min Rapp Ann 1995–1996: 99–

108.

6. Konings A (2001) Malawi Cichlids in their Natural Habitat: Cichlid Press.

7. Joyce DA, Lunt DH, Genner MJ, Turner GF, Bills R, et al. (2011) Repeated

colonization and hybridization in Lake Malawi cichlids. Curr Biol 21: R108–

109.

8. Loh Y-HE, Bezault E, Muenzel FM, Roberts RB, Swofford R, et al. (2013)

Origins of Shared Genetic Variation in African Cichlids. Molecular Biology and

Evolution 30: 906–917.

9. Hert E (1991) Female choice based on egg-spots in Pseudotropheus aurora

Burgess 1976, a rock-dwelling cichlid of Lake Malawi, Africa. J Fish Biol 38:

951–953.

10. Knight ME, Turner GF (2004) Laboratory mating trials indicate incipient

speciation by sexual selection among populations of the cichlid fish Psudotropheus

zebra from Lake Malawi. Proc R Soc Lond, Ser B: Biol Sci 271: 675–680.

11. Maan ME (2004) Intraspecific sexual selection on a speciation trait, male

coloration, in the Lake Victoria cichlid Pundamilia nyererei. Proc R Soc Lond,

Ser B: Biol Sci 271: 2445–2452.

12. Seehausen O, Terai Y, Magalhaes IS, Carleton KL, Mrosso HD, et al. (2008)

Speciation through sensory drive in cichlid fish. Nature 455: 620–626.

13. Seehausen O, van Alphen JJ, Lande R (1999) Color polymorphism and sex-ratio

distortion in a cichlid fish as a transient stage in sympatric speciation by sexual

selection. Ecol Lett 2: 367–378.

14. Seehausen O, van Alphen JJM (1998) The effect of male coloration on female

mate choice in closely related Lake Victoria cichlids (Haplochromis nyererei

complex). Behav Ecol Sociobiol 42: 1–8.

15. Stelkens RB, Pierotti MER, Joyce DA, Smith AM, van der Sluijs I, et al. (2008)

Female mating preferences facilitate disruptive sexual selection on male nuptial

colouration in hybrid cichlid fish. Phil Trans R Soc B 363: 2861–2870.

16. McElroy DM, Kornfield I, Everett J (1990) Coloration in African cichlids:

diversity and constraints in lake Malawi endemics. Neth J Zool 41: 250–268.

17. Deutsch JC (1997) Colour diversification in Malawi cichlids: evidence for

adaptation, reinforcement or sexual selection? Biol J Linn Soc 62: 1–14.

18. Gaston KJ, O’Neill MA (2004) Automated species identification: why not? Philos

Trans R Soc Lond B 359: 655–667.

19. Grosjean P, Picheral M, Warembourg C, Gorsky G (2004) Enumeration,

measurement, and identification of net zooplankton samples using the

ZOOSCAN digital imaging system. ICES J Mar Sci 61: 518–525.

20. Mayo M, Watson AT (2007) Automatic species identification of live moths.

Knowledge-Based Syst 20: 195–202.

21. Larios N, Deng H, Zhang W, Sarpola M, Yuen J, et al. (2008) Automated insect

identification through concatenated histograms of local appearance features:

feature vector generations and region detection for deformable objects. Mach

Vis Appl 19: 105–123.

22. Bhanu B, Li R, Heraty J, Murray E (2008) Automated classification of skippers

based on parts representation. Am Entomol 54: 228–231.

23. Benson B, Cho J, Goshorn D, Kastner R (2009) Field programmable gate array

(FPGA) based fish detection using Haar classifiers. Am Acad Underwater Sci.

pp. 1–8.

Computer Vision for Cichlids Identification

PLOS ONE | www.plosone.org 14 October 2013 | Volume 8 | Issue 10 | e77686



24. Nagashima Y, Ishimatsu T (1998) A morphological approach to fish

discrimination. In Proceedings of the 1998 IAPR Workshop on Mach Vis Appl
1: 306–309.

25. Rova A, Mori G, Dill LM (2007) One fish, two fish, butterfish, trumpeter:
Recognizing fish in underwater video. In Proceedings of the 2007 IAPR

Conference on Mach Vis Appl 1: 404–407.

26. Larsen R, Olafsdottir H, Ersbøll B (2009) Shape and texture based classification

of fish species. Image Analysis 5575: 745–749.

27. Storbeck F, Daan B (2001) Fish species recognition using computer vision and a

neural network. Fish Res 51: 11–15.

28. Animal Behaviour Society (2006) Guidelines for the treatment of animals in

behavioural research and teaching. Anim Behav 71: 245–253.

29. Rowley HA, Jing Y, Baluja S (2006) Large scale image-based adult-content

filtering. In the Proceedings of the VISAPP 2006 the First Int Conference on

Comp Vis Theor Appl 2: 290–296.

30. McCulloch WS, Pitts W (1943) A logical calculus of ideas immanent in neural

activity. Bull Math Biophy 5: 115–133.

31. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20: 273–297.

32. Collobert R, Bengio S (2004) Links between perceptrons, MLPs and SVMs.

ICML ’04: Proceedings of the twenty-first international conference on Machine

learning: 23.

33. Seo T-K (2010) Classification of nucleotide sequences using support vector

machines. J Mol Evol 71: 250–267.

34. Xue C, Li F, He T, Liu GP, Li Y, et al. (2005) Classification of real and pseudo

microRNA precursors using local structure-sequence features and support vector
machine. BMC Bioinformatics 6: 310.

35. Huang K, Murphy RF (2004) Boosting accuracy of automated classification of
fluorescence microscope images for location proteomics. BMC Bioinformatics 5:

78.

36. Bruzzone L, Chi M, Marconcini M (2006) A novel transductive SVM for

semisupervised classification of remote-sensing images. IEEE Trans Geosci
Remot Sen 44: 3363–3373.

37. Leo B (2001) Random Forests. Mach Learn 45: 5–32.

38. Bosch A, Zisserman A, Munoz X (2007) Image classification using Random

Forests and Ferns. In Proceedings of ICCV 2007 Conference on Com Vis 1: 1–
8.

39. Cutler DR, Edwards TC, Beard KH, Cutler A, Hess KT, et al. (2007) Random
Forests for classification in Ecology. Ecology 88: 2783–2792.

40. Chen AH, Tsau Y-W, Lin C-H (2010) Novel methods to identify biologically

relevant genes for leukemia and prostate cancer from gene expression profiles.
BMC Genomics 11: 274–274.

41. Nicodemus KK, Callicott JH, Higier RG, Luna A, Nixon DC, et al. (2010)
Evidence of statistical epistasis between DISC1, CIT and NDEL1 impacting risk

for schizophrenia: biological validation with functional neuroimaging. Hum
Genet 127: 441–452.

42. Chang C-C, Lin C-J (2001) LIBSVM: A Library for Support Vector Machines.
Available: http://www.csie.ntu.edu.tw/,cjlin/libsvm/index.html. Accessed

2013 Sept 17.

43. ImageMagick Studio LLC website. Available: http://www.imagemagick.org/

script/index.php. Accessed 2013 Sept 17.

44. Rother C, Kolmogorov V, Blake A (2004) ‘‘GrabCut’’: interactive foreground

extraction using interated graph cuts. ACM Transactions on Graphics: the
Proceedings of the ACM SIGGRAPH 2004 23: 309–314.

45. Talbot JF, Xu X (2006) Implementing Grabcut. Brigham Young University. Salt
Lake City, USA.

46. Kiryati N, Eldar Y, Bruckstein AM (1991) A probabilistic Hough transform.
Pattern Recogn 24: 303–316.

47. Rohlf FJ (2001) TPSDIG32: Geometric morphometric software for the PC.
Morphometric software website. Available: http://life.bio.sunysb.edu/morph/

index.html. Accessed 2013 Sept 17.

48. Rohlf FJ, Slice D (1990) Extensions of the Procrustes method for the optimal
superimposition of landmarks. Syst Biol 39: 40–59.

49. Klingenberg CP (2011) MorphoJ: an integrated software package for geometric
morphometrics. Mol Ecol Resources 11: 353–357.

50. Chen YW, Lin CJ (2006) Combining SVMs with various feature selection
strategies. In: Guyon I, Nikravesh M, Gunn S, Zadeh LA, Feature Extraction:

Foundations and Applications. Berlin: Springer. pp. 315–324.

51. Trewavas E (1984) Nouvel examen des genres et sous-genres du complexe

Pseudotropheus-Melanochromis du lac Malawi (Pisces, Perciformes, Cichlidae). Revue
Francaise d’Aquariologie et de Herpetologie 10: 97–106.

52. Hulsey CD, Mims MC, Streelman JT (2007) Do constructional constraints
influence cichlid craniofacial diversification? Proc R Soc Lond, Ser B: Biol Sci

274: 1867–1875.

53. Goldstein HM (2009) Taxonomic review of the genus Tropheops (Cichlidae) with

descriptions of new species from lake Malawi, Africa. M.S. thesis. University
Park: Pennsylvania State University. 1–175 p.

54. Kornfield I (1978) Evidence for rapid speciation in African cichlid fishes.

Experientia 34: 335–336.
55. McKaye ER, Kocher T, Reinthal P, Kornfield I (1982) A sympatric species

complex of Petrotilapia trewavas from Lake Malawi analysed by enzyme

electrophoresis (Pisces, Cichlidae). Zool J Linn Soc 76: 91–96.
56. McKaye KR, Kocher T, Reinthal P, Harrison R, Kornfield I (1984) Genetic

evidence of allopatric and sympatric differentiation among color morphs of a
Lake Malawi cichlid fish. Evolution 38: 215–219.

57. Moran P, Kornfield I (1993) Retention of an ancestral polymorphism in the

Mbuna species flock (Teleostei: Cichlidae) of Lake Malawi. Mol Biol Evol 10:
1015–1029.

58. Parker A, Kornfield I (1997) Evolution of the mitochondrial DNA control region
in the mbuna (Cichlidae) species flock of Lake Malawi. J Mol Evol 45: 70–83.

59. Kornfield I, Parker A (1997) Molecular systematics of a rapidly evolving species
flock: the mbuna of Lake Malawi and the search for phylogenetic signal. In:

Kocher TD, Stepien CA, Molecular Systematics of Fishes. New York: Academic

Press. pp. 25–37.
60. Hey J, Won Y-J, Sivasundar A, Nielsen R, Markert JA (2004) Using nuclear

haplotypes with microsatellites to study gene flow between recently separated
Cichlid species. Mol Ecol 13: 909–919.

61. Albertson RC, Markert JA, Danley PD, Kocher TD (1999) Phylogeny of a

rapidly evolving clade: the cichlid fishes of Lake Malawi, East Africa. Proc Natl
Acad Sci USA 96: 5107–5110.

62. Smith PF, Konings A, Kornfield I (2003) Hybrid origin of a cichlid population in
Lake Malawi: implications for genetic variation and species diversity. Mol Ecol

12: 2497–2504.
63. Steelman JT, Gmyrek SL, Kidd MR, Kidd C, Robinson RL, et al. (2004)

Hybridization and contemporary evolution in an introduced cichlid fish from

Lake Malawi National Park. Mol Ecol 13: 2471–2479.
64. Stauffer JR, Bowers NJ, Kocher TD, McKaye KR (1996) Evidence of

hybridization between Cynotilapia afra and Pseudotropheus zebra (Teleostei:
Cichlidae) following an intralacustrine translocation in Lake Malawi. Copeia

1996: 203–208.

65. Markert JA, Danley PD, Arnegard ME (2001) New markers for new species:
microsatellite loci and the East African cichlids. Trends Ecol Evol 16: 100–107.

66. Van Oppen MJH, Rico C, Deutsch JC, Turner GF, Hewitt GM (1997) Isolation
and characterization of microsatellite loci in the cichlid fish Pseudotropheus

zebra. Mol Ecol 6: 387–388.
67. Knight ME, Turner GF (1999) Reproductive isolation among closely related

Lake Malawi cichlids: can males recognize conspecific females by visual cues?

Anim Behav 58: 761–768.
68. Allender CJ, Seehausen O, Knight ME, Turner GF, Maclean N (2003)

Divergent selection during speciation of Lake Malawi cichlid fishes inferred from
parallel radiations in nuptial coloration. Proc Natl Acad Sci U S A 100: 14074–

14079.

69. Won Y-J, Sivasundar A, Wang Y, Hey J (2005) On the origin of Lake Malawi
cichlid species: a population genetic analysis of divergence. Proc Natl Acad Sci

USA 102: 6581–6586.
70. Won Y-J, Wang Y, Sivasundar A, Raincrow J, Hey J (2006) Nuclear gene

variation and molecular dating of the cichlid species flock of Lake Malawi. Mol
Biol Evol 23: 828–837.

71. Seehausen O, Schluter D (2004) Male-male competition and nuptial-colour

displacement as a diversifying force in Lake Victoria cichlid fishes. Proc R Soc
Lond, Ser B: Biol Sci 271: 1345.

72. Endler JA (1973) Gene flow and population differentiation. Science 179: 243–
250.

73. Rice WR, Hostert EF (1993) Laboratory experiments on speciation. Evolution

47: 1637–1653.
74. Danley P, Markert J, Arnegard M, Kocher T (2000) Divergence with gene flow

in the rock-dwelling cichlids of Lake Malawi. Evolution 54: 1725–1737.
75. Adams DC, Rohlf FJ (2000) Ecological character displacement in Plethodon:

biomechanical differences found from a geometric morphometric study. Proc

Natl Acad Sci USA 97: 4106–4111.
76. Brown Jr WL, Wilson EO (1956) Character displacement. Syst Biol 5: 49.

77. Dayan T, Simberloff D (2005) Ecological and community wide character
displacement: the next generation. Ecol Lett 8: 875–894.

78. Losos JB (2000) Ecological character displacement and the study of adaptation.
Proc Natl Acad Sci USA 97: 5693–5695.

79. Schluter D, McPhail JD (1992) Ecological character displacement and speciation

in sticklebacks. Am Nat 140: 85–108.
80. Schoener TW (1974) Resource partitioning in ecological communities. Science

185: 27–39.
81. Kassam DD, Adams DC, Ambali AJD, Yamaoka K (2003) Body shape variation

in relation to resource partitioning within cichlid trophic guilds coexisting along

the rocky shore of Lake Malawi. Anim Biol 53: 59–70.
82. Kang S-H, Jeon W, Lee S-H (2012) Butterfly species identification by branch

length similarity entropy. J Asia-Pacif Entomol 15: 437–441.

Computer Vision for Cichlids Identification

PLOS ONE | www.plosone.org 15 October 2013 | Volume 8 | Issue 10 | e77686


